Tuesday 22 August 2017

Processo Médio Móvel Da Acf


Um relato de Correlogram Na análise de dados, geralmente começamos com as propriedades estatísticas descritivas dos dados da amostra (por exemplo, média, desvio padrão, distorção, curtose, distribuição empírica, etc.). Esses cálculos são certamente úteis, mas eles não contabilizam a ordem das observações nos dados da amostra. A análise de séries temporais exige que prestem atenção à ordem e, portanto, requer um tipo diferente de estatística descritiva: estatística descritiva de séries temporais ou simplesmente análise de correlograma. A análise de correlograma examina a dependência tempo-espaço dentro dos dados da amostra, e enfoca a auto-covariância empírica, auto-correlação e testes estatísticos relacionados. Finalmente, o correlograma é uma pedra angular para identificar o (s) modelo (s) e modelo (s). O que um gráfico para auto correlação (ACF) ou auto-correlação parcial (PACF) nos informa sobre a dinâmica do processo subjacente Este tutorial é um pouco mais teórico do que os tutoriais anteriores na mesma série, mas faremos o nosso melhor para dirigir as intuições Casa para você. Antecedentes Primeiro, comece com uma definição para a função de auto-correlação, simplifique-a e investigue o ACF teórico para um processo de ARMA. Função de auto-correlação (ACF) Por definição, a correlação automática para lag k é expressa da seguinte forma: usando a fórmula de correlação automática de MA (q), podemos calcular as funções de auto-correlação de ARMA (p, q) para sua representação de MA . Isso está ficando intenso Alguns de vocês podem estar se perguntando por que não usamos VAR ou uma representação espacial de estados para simplificar as notações. Eu fiz um ponto para permanecer no domínio do tempo e evitei novas idéias ou truques de matemática, pois não serviriam nossas intenções aqui: Implicando a ordem ARMA exata usando os valores de ACF por si mesmos, o que é tudo menos preciso. Intuição: os valores de ACF podem ser considerados como valores de coeficientes do modelo equivalente de MA. Intuição: A variância condicional não tem barreira (efeito) nos cálculos de auto-correlação. Intuição: A média de longo prazo também não possui barreira (efeito) nas auto-correlações. Função de auto-correlação parcial (PACF) Até agora, vimos que identificar a ordem do modelo (MA ou AR) não é trivial para casos não simples, por isso precisamos de outra ferramenta de auto-correlação parcial (PACF). A função de auto-correlação parcial (PACF) desempenha um papel importante na análise de dados com o objetivo de identificar a extensão do atraso em um modelo autoregressivo. O uso desta função foi introduzido como parte da abordagem Box-Jenkins para a modelagem de séries temporais, pelo que se poderia determinar os atrasos adequados p em um modelo AR (p) ou em um modelo ARIMA (p, d, q) estendido, traçando As funções de auto-correlação parcial. Simplificando, o PACF para lag k é o coeficiente de regressão para o kth term, como mostrado abaixo: O PACF assume que o modelo subjacente é AR (k) e usa múltiplas regressões para calcular o último coeficiente de regressão. Intuição rápida: os valores de PACF podem ser pensados ​​(grosso modo) como valores de coeficientes do modelo de AR equivalente. Como o PACF é útil para nós Supondo que temos um processo AR (p), então o PACF terá valores significativos para os primeiros períodos de p e cairá para zero depois. E quanto ao processo MA O processo MA tem valores PACF não-nulos para um número (de teorias) infinito de atrasos. Exemplo 4: MA (1) Identificando os números de termos AR ou MA em um modelo ARIMA ACF e PACF: Depois de uma série temporal ter sido estacionada por diferenciação, o próximo passo na montagem de um modelo ARIMA é determinar se os termos AR ou MA São necessários para corrigir qualquer autocorrelação que permaneça na série diferenciada. Claro, com um software como o Statgraphics, você poderia tentar algumas combinações diferentes de termos e ver o que funciona melhor. Mas há uma maneira mais sistemática de fazer isso. Ao analisar as linhas de função de autocorrelação (ACF) e autocorrelação parcial (PACF) da série diferenciada, você pode identificar tentativamente os números de termos AR e ou MA que são necessários. Você já conhece o gráfico ACF: é apenas um gráfico de barras dos coeficientes de correlação entre séries temporais e atrasos em si. O gráfico PACF é um gráfico dos coeficientes de correlação parciais entre a série e os atrasos de si. Em geral, a correlação quotpartial entre duas variáveis ​​é a quantidade de correlação entre elas que não é explicada por suas correlações mútuas com um conjunto especificado de outras variáveis. Por exemplo, se estamos regredindo uma variável Y em outras variáveis ​​X1, X2 e X3, a correlação parcial entre Y e X3 é a quantidade de correlação entre Y e X3 que não é explicada pelas suas correlações comuns com X1 e X2. Essa correlação parcial pode ser calculada como a raiz quadrada da redução de variância que é alcançada pela adição de X3 à regressão de Y em X1 e X2. Uma correlação automática parcial é a quantidade de correlação entre uma variável e um atraso de si mesmo que não é explicado por correlações em todas as notas de ordem inferior. A autocorrelação de uma série temporal Y no intervalo 1 é o coeficiente de correlação entre Y t e Y t - 1. O que é presumivelmente também a correlação entre Y t -1 e Y t -2. Mas se Y t está correlacionado com Y t -1. E Y t -1 está igualmente correlacionado com Y t -2. Então também devemos esperar encontrar correlação entre Y t e Y t-2. Na verdade, a quantidade de correlação que devemos esperar no intervalo 2 é precisamente o quadrado da correlação lag-1. Assim, a correlação no intervalo de 1 quotpropagatesquot para lag 2 e presumivelmente para atrasos de ordem superior. A autocorrelação parcial no lag 2 é, portanto, a diferença entre a correlação real no intervalo 2 e a correlação esperada devido à propagação da correlação no intervalo 1. Aqui está a função de autocorrelação (ACF) da série UNITS, antes de qualquer diferenciação ser realizada: As autocorrelações são significativas para um grande número de atrasos - mas talvez as autocorrelações nos intervalos 2 e acima sejam meramente decorrentes da propagação da autocorrelação no intervalo 1. Isso é confirmado pelo argumento do PACF: Observe que o gráfico do PACF tem uma significância Pico apenas no intervalo 1, o que significa que todas as autocorrelações de ordem superior são efetivamente explicadas pela autocorrelação lag-1. As autocorrelações parciais em todos os atrasos podem ser calculadas ajustando uma sucessão de modelos autorregressivos com um número crescente de atrasos. Em particular, a autocorrelação parcial no intervalo k é igual ao coeficiente estimado de AR (k) em um modelo auto-regressivo com termos k - isto é. Um modelo de regressão múltipla em que Y é regredido em LAG (Y, 1), LAG (Y, 2), etc. até LAG (Y, k). Assim, por mera inspeção do PACF, você pode determinar quantos termos de AR você precisa usar para explicar o padrão de autocorrelação em uma série de tempo: se a autocorrelação parcial é significativa no intervalo k e não significativa em atrasos de ordem superior - ou seja. Se o PACF quotcuts offquot at lag k - então isso sugere que você deve tentar ajustar um modelo de ordem autorregressivo k O PACF da série UNITS fornece um exemplo extremo do fenômeno de corte: ele tem um pico muito grande no intervalo 1 E nenhum outro pico significativo, indicando que na ausência de diferenciação, um modelo AR (1) deve ser usado. No entanto, o termo AR (1) neste modelo resultará ser equivalente a uma primeira diferença, porque o coeficiente estimado de AR (1) (que é a altura do pico PACF no intervalo 1) será quase exatamente igual a 1 . Agora, a equação de previsão para um modelo AR (1) para uma série Y sem ordens de diferenciação é: Se o coeficiente AR (1) 981 1 nesta equação for igual a 1, é equivalente a prever que a primeira diferença De Y é constante - ou seja É equivalente à equação do modelo de caminhada aleatória com crescimento: o PACF da série UNITS está nos dizendo que, se não diferenciarmos, devemos caber um modelo AR (1) que se tornará equivalente a tomar Uma primeira diferença. Em outras palavras, está nos dizendo que UNITS realmente precisa de uma ordem de diferenciação para ser estacionada. Assinaturas AR e MA: se o PACF exibir um corte nítido enquanto o ACF decai mais devagar (ou seja, tem picos significativos em atrasos maiores), dizemos que a série estacionada exibe uma assinatura quotAR, o que significa que o padrão de autocorrelação pode ser explicado com mais facilidade Adicionando termos AR do que adicionando termos MA. Você provavelmente descobrirá que uma assinatura de AR é comumente associada à autocorrelação positiva no intervalo 1 - isto é. Ele tende a surgir em séries que são ligeiramente inferiores. A razão para isso é que um termo AR pode atuar como uma diferença quotparcial na equação de previsão. Por exemplo, em um modelo AR (1), o termo AR age como uma primeira diferença se o coeficiente autorregressivo for igual a 1, não faz nada se o coeficiente autorregressivo for zero, e ele age como uma diferença parcial se o coeficiente for entre 0 e 1. Então, se a série for ligeiramente inferior à diferença - ou seja Se o padrão não estacionário de autocorrelação positiva não tiver sido completamente eliminado, ele irá trocar por uma diferença parcial ao exibir uma assinatura AR. Portanto, temos a seguinte regra de ouro para determinar quando adicionar termos AR: Regra 6: Se o PACF da série diferenciada exibir um corte nítido e ou a autocorrelação lag-1 é positiva - isto é. Se a série aparecer um pouco quotunderdifferencedquot - então considere adicionar um termo AR ao modelo. O atraso em que o PACF corta é o número indicado de termos AR. Em princípio, qualquer padrão de autocorrelação pode ser removido de uma série estacionada, adicionando termos autorregressivos suficientes (atrasos da série estacionada) para a equação de previsão, e o PACF lhe diz quantos desses termos provavelmente serão necessários. No entanto, esta não é sempre a maneira mais simples de explicar um determinado padrão de autocorrelação: às vezes é mais eficiente adicionar os termos MA (atrasos dos erros de previsão). A função de autocorrelação (ACF) desempenha o mesmo papel para os termos MA que o PACF reproduz para os termos AR - ou seja, o ACF informa quantos termos MA são susceptíveis de serem necessários para remover a autocorrelação restante da série diferenciada. Se a autocorrelação é significante no intervalo k mas não em atrasos maiores - isto é. Se o ACF quotcuts offquot no lag k - isso indica que exatamente os termos de k MA devem ser usados ​​na equação de previsão. No último caso, dizemos que a série estacionada exibe uma assinatura quotMA, o que significa que o padrão de autocorrelação pode ser explicado mais facilmente adicionando termos MA que adicionando termos AR. Uma assinatura MA é comumente associada à autocorrelação negativa no intervalo 1 - isto é. Tende a surgir em séries que são ligeiramente diferenciadas. A razão para isso é que um termo MA pode quetparcialmente cancelar uma ordem de diferenciação na equação de previsão. Para ver isso, lembre-se de que um modelo ARIMA (0,1,1) sem constante é equivalente a um modelo de Suavização Exponencial Simples. A equação de previsão para este modelo é onde o coeficiente MA (1) 952 1 corresponde à quantidade 1 - 945 no modelo SES. Se 952 1 for igual a 1, isso corresponde a um modelo SES com 945 0, que é apenas um modelo CONSTANT porque a previsão nunca é atualizada. Isso significa que quando 952 1 é igual a 1, ele realmente está cancelando a operação de diferenciação que normalmente permite que a previsão de SES se ancore novamente na última observação. Por outro lado, se o coeficiente de média móvel for igual a 0, este modelo reduz-se a um modelo de caminhada aleatória - ou seja. Ele deixa a operação de diferenciação sozinha. Então, se 952 1 é algo maior do que 0, é como se cancelássemos parcialmente uma ordem de diferenciação. Se a série já estiver ligeiramente diferenciada - ou seja. Se a autocorrelação negativa tiver sido introduzida - então, as cotas para uma diferença serão parcialmente canceladas ao exibir uma assinatura MA. (Muita onda de braços está acontecendo aqui. Uma explicação mais rigorosa sobre esse efeito é encontrada na documentação sobre Estrutura Matemática do modelo ARIMA.) Daí a seguinte regra adicional: Regra 7: Se o ACF da série diferenciada exibir uma O corte nítido e a autocorrelação de lag-1 são negativos --e Se a série aparecer um pouco quotoverdifferencedquot - então considere adicionar um termo MA ao modelo. O atraso em que o ACF corta é o número indicado de termos MA. Um modelo para a série UNITS - ARIMA (2,1,0): Anteriormente, determinamos que a série UNITS precisava (pelo menos) de uma estação de diferencial não-estacional para ser estacionada. Depois de tomar uma diferença não sazonal - ou seja. Ajustando um modelo ARIMA (0,1,0) com constante - as parcelas ACF e PACF se parecem com isto: Observe que (a) a correlação no intervalo 1 é significativa e positiva, e (b) o PACF mostra um quotcutoffquot mais nítido do que O ACF. Em particular, o PACF tem apenas dois picos significativos, enquanto o ACF tem quatro. Assim, de acordo com a Regra 7 acima, a série diferenciada exibe uma assinatura AR (2). Se, portanto, definir a ordem do termo AR para 2 - ou seja. Ajustar um modelo ARIMA (2,1,0) - obtemos os seguintes gráficos ACF e PACF para os resíduos: a autocorrelação nos atrasos cruciais - ou seja, atrasos 1 e 2 - foi eliminada e não há padrão discernível Em atrasos de ordem superior. A série de séries temporais dos resíduos mostra uma tendência ligeiramente preocupante para se afastar da média: no entanto, o relatório de resumo da análise mostra que o modelo, no entanto, funciona bastante bem no período de validação, ambos os coeficientes de AR são significativamente diferentes de zero e o padrão O desvio dos resíduos foi reduzido de 1.54371 para 1.4215 (quase 10) pela adição dos termos AR. Além disso, não existe nenhum sinal de quotunit rootquot porque a soma dos coeficientes de AR (0.2522540.195572) não é próxima de 1. (as raízes da unidade são discutidas com mais detalhes abaixo). No geral, isso parece ser um bom modelo . As previsões (não transformadas) para o modelo mostram uma tendência ascendente linear projetada para o futuro: a tendência nas previsões de longo prazo deve-se ao fato de que o modelo inclui uma diferença não-temporária e um termo constante: este modelo é basicamente uma caminhada aleatória com Crescimento ajustado pela adição de dois termos autorregressivos - ou seja Dois atrasos da série diferenciada. A inclinação das previsões de longo prazo (ou seja, o aumento médio de um período para outro) é igual ao termo médio no resumo do modelo (0.467566). A equação de previsão é: onde 956 é o termo constante no resumo do modelo (0.258178), 981 1 é o coeficiente AR (1) (0.25224) e 981 2 é o coeficiente AR (2) (0.195572). Média versus constante: em geral, o termo quotmean no termo de um modelo ARIMA refere-se à média da série diferenciada (ou seja, a tendência média se a ordem de diferenciação for igual a 1), enquanto o quotconstantquot é o termo constante que aparece No lado direito da equação de previsão. Os termos médios e constantes são relacionados pela equação: MEIO CONSTANTE (1 menos a soma dos coeficientes AR). Neste caso, temos 0.258178 0.467566 (1 - 0.25224 - 0.195572) Modelo alternativo para a série UNITS - ARIMA (0,2,1): Lembre-se de que, quando começamos a analisar a série UNITS, não estávamos inteiramente certos do Ordem correta de diferenciação para uso. Uma ordem de diferenciação não-sazonal produziu o desvio padrão mais baixo (e um padrão de autocorrelação positiva leve), enquanto duas ordens de diferenciação não-sazonal produziram uma trama de séries temporais mais estacionárias (mas com autocorrelação negativa bastante forte). Aqui estão ambos ACF e PACF da série com duas diferenças não-sazonais: o único pico negativo no intervalo 1 no ACF é uma assinatura MA (1), de acordo com a Regra 8 acima. Assim, se usássemos 2 diferenças não sazonais, também gostaríamos de incluir um termo MA (1), produzindo um modelo ARIMA (0,2,1). De acordo com a Regra 5, também queremos suprimir o termo constante. Aqui, então, são os resultados da montagem de um modelo ARIMA (0,2,1) sem constante: Observe que o desvio padrão de ruído branco estimado (RMSE) é apenas muito ligeiramente maior para esse modelo do que o anterior (1.46301 aqui versus 1.45215 anteriormente). A equação de previsão para este modelo é: onde theta-1 é o coeficiente MA (1). Lembre-se que isso é semelhante a um modelo Linear Exponential Suavização, com o coeficiente MA (1) correspondente à quantidade 2 (1-alfa) no modelo LES. O coeficiente MA (1) de 0,76 neste modelo sugere que um modelo de LES com alfa na proximidade de 0,72 se encaixaria igualmente bem. Na verdade, quando um modelo LES é ajustado para os mesmos dados, o valor ideal de alfa é de aproximadamente 0,61, o que não está muito longe. Aqui está um relatório de comparação de modelos que mostra os resultados da montagem do modelo ARIMA (2,1,0) com constante, o modelo ARIMA (0,2,1) sem constante eo modelo LES: os três modelos funcionam quase idênticamente em O período de estimação eo modelo ARIMA (2,1,0) com constante aparece um pouco melhor do que os outros dois no período de validação. Com base apenas nestes resultados estatísticos, seria difícil escolher entre os três modelos. No entanto, se traçamos as previsões de longo prazo feitas pelo modelo ARIMA (0,2,1) sem constante (que são essencialmente iguais às do modelo LES), vemos uma diferença significativa daqueles do modelo anterior: As previsões têm um pouco menos de tendência ascendente do que as do modelo anterior - porque a tendência local próxima ao final da série é ligeiramente inferior à tendência média em toda a série -, mas os intervalos de confiança se expandem muito mais rapidamente. O modelo com duas ordens de diferenciação pressupõe que a tendência da série é variável no tempo, portanto, considera que o futuro distante é muito mais incerto do que o modelo com apenas uma ordem de diferenciação. Qual modelo devemos escolher. Isso depende dos pressupostos que fazemos com relação à constância da tendência nos dados. O modelo com apenas uma ordem de diferenciação assume uma tendência média constante - é essencialmente um modelo de caminhada aleatória ajustado com crescimento - e, portanto, faz projeções de tendência relativamente conservadoras. Também é bastante otimista sobre a precisão com que pode prever mais de um período à frente. O modelo com duas ordens de diferenciação pressupõe uma tendência local variável no tempo - é essencialmente um modelo de alisamento exponencial linear - e suas projeções de tendência são um pouco mais difíceis. Como regra geral neste tipo de situação, eu recomendaria escolher o modelo com a menor ordem de diferenciação, outras coisas sendo aproximadamente iguais. Na prática, os modelos de alinhamento aleatório ou simples-exponencial-suavização parecem funcionar melhor do que os modelos de alisamento exponencial linear. Modelos mistos: na maioria dos casos, o melhor modelo revela um modelo que usa apenas os termos AR ou apenas os termos MA, embora em alguns casos um modelo quotmixedquot com ambos os termos AR e MA possa fornecer o melhor ajuste para os dados. No entanto, deve-se ter cuidado ao montar modelos mistos. É possível um termo AR e um termo MA para cancelar os efeitos uns dos outros. Mesmo que ambos possam parecer significativos no modelo (conforme julgado pelas estatísticas t de seus coeficientes). Assim, por exemplo, suponha que o modelo quotcorrectquot para uma série temporal seja um modelo ARIMA (0,1,1), mas, em vez disso, você se encaixa em um modelo ARIMA (1,1,2) - ou seja. Você inclui um termo de AR adicional e um termo de MA adicional. Em seguida, os termos adicionais podem acabar aparecendo significativo no modelo, mas, no interior, eles podem estar apenas trabalhando uns contra os outros. As estimativas de parâmetros resultantes podem ser ambíguas e o processo de estimação de parâmetros pode levar muitas (por exemplo, mais de 10) iterações para convergir. Assim: Regra 8: É possível que um termo de AR e um termo de MA cancelem os efeitos uns dos outros, então, se um modelo de AR-MA misturado parece se adequar aos dados, também tente um modelo com um termo de AR menos e um termo de MA menor - principalmente se as estimativas de parâmetros no modelo original exigirem mais de 10 iterações para convergir. Por esse motivo, os modelos ARIMA não podem ser identificados por uma abordagem passo a passo que inclui os termos AR e MA. Em outras palavras, você não pode começar por incluir vários termos de cada tipo e, em seguida, atirar aqueles cujos coeficientes estimados não são significativos. Em vez disso, você normalmente segue uma abordagem quotforward stepwisequot, adicionando termos de um tipo ou outro como indicado pela aparência das parcelas ACF e PACF. Raizes da unidade: se uma série estiver grosseiramente subjugada ou superdiferenciada - isto é. Se toda uma ordem de diferenciação precisa ser adicionada ou cancelada, isso geralmente é sinalizado por uma quotunit rootquot nos coeficientes estimados de AR ou MA do modelo. Um modelo de AR (1) é dito ter uma raiz de unidade se o coeficiente estimado de AR (1) for quase exatamente igual a 1. (Por citar exatamente o quot, eu realmente não significa significativamente diferente de. Em termos do erro padrão próprio dos coeficientes. ) Quando isso acontece, significa que o termo AR (1) imita precisamente uma primeira diferença, caso em que você deve remover o termo AR (1) e, em vez disso, adicionar uma ordem de diferenciação. (Isso é exatamente o que aconteceria se você montasse um modelo AR (1) para a série UNITS indiferenciada, como observado anteriormente.) Em um modelo AR de ordem superior, existe uma raiz unitária na parte AR do modelo se a soma de Os coeficientes AR são exatamente iguais a 1. Neste caso, você deve reduzir o orden do termo AR por 1 e adicionar uma ordem de diferenciação. Uma série de tempo com uma raiz de unidade nos coeficientes de AR é não estacionária - ou seja. Ele precisa de uma maior ordem de diferenciação. Regra 9: Se houver uma unidade de raiz na parte AR do modelo - isto é. Se a soma dos coeficientes AR for quase exatamente 1 - você deve reduzir o número de termos AR em um e aumentar a ordem de diferenciação por um. Da mesma forma, um modelo MA (1) diz ter uma unidade de raiz se o coeficiente de MA estimado (1) for exatamente igual a 1. Quando isso acontece, significa que o termo MA (1) é exatamente cancelar uma primeira diferença, em Em qual caso, você deve remover o termo MA (1) e também reduzir a ordem de diferenciação por um. Em um modelo de MA de ordem superior, existe uma raiz de unidade se a soma dos coeficientes MA for exatamente igual a 1. Regra 10: Se houver uma raiz de unidade na parte MA do modelo - isto é. Se a soma dos coeficientes MA for quase exatamente 1 - você deve reduzir o número de termos MA em um e reduzir a ordem de diferenciação por um. Por exemplo, se você encaixa um modelo de alisamento exponencial linear (um modelo ARIMA (0,2,2)) quando um modelo de suavização exponencial simples (um modelo ARIMA (0,1,1) teria sido suficiente, você pode achar que A soma dos dois coeficientes MA é quase igual a 1. Ao reduzir a ordem MA e a ordem de diferenciação por cada uma delas, você obtém o modelo SES mais apropriado. Um modelo de previsão com uma unidade de raiz nos coeficientes de MA estimados é considerado não invariável. O que significa que os resíduos do modelo não podem ser considerados como estimativas do ruído aleatório quottruequot que gerou as séries temporais. Outro sintoma de uma raiz unitária é que as previsões do modelo podem permitir-se ou comportar-se com estranheza. Se o gráfico de séries temporais das previsões de longo prazo do modelo parecer estranho, você deve verificar os coeficientes estimados do seu modelo para a presença de uma unidade de raiz. Regra 11: Se as previsões a longo prazo parecerem erráticas ou instáveis, pode haver uma unidade de raiz nos coeficientes AR ou MA. Nenhum desses problemas surgiu com os dois modelos instalados aqui, porque fomos cuidadosos para começar com ordens plausíveis de diferenciação e números apropriados de coeficientes AR e MA ao estudar os modelos ACF e PACF. Discussões mais detalhadas das raízes das unidades e efeitos de cancelamento entre os termos AR e MA podem ser encontradas na Estrutura Matemática do folheto dos Modelos ARIMA.2.1 Modelos Métodos em Movimento (modelos MA) Os modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos autorregressivos e os termos médios móveis. Na semana 1, aprendemos um termo autorregressivo em um modelo de séries temporais para a variável x t é um valor remanescente de x t. Por exemplo, um termo autorregressivo de lag 1 é x t-1 (multiplicado por um coeficiente). Esta lição define os termos médios móveis. Um termo médio móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Deixe (wt overset N (0, sigma2w)), o que significa que o w t é idêntico, distribuído independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel de 1ª ordem, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) O modelo de média móvel da ordem q , Denotado por MA (q) é (xt mu wt theta1w theta2w dots thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele flip os signos algébricos de valores de coeficientes estimados e termos (desactuados) em fórmulas para ACFs e variâncias. Você precisa verificar seu software para verificar se os sinais negativos ou positivos foram usados ​​para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades teóricas de uma série de tempo com um modelo MA (1) Observe que o único valor diferente de zero na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma amostra ACF com autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para estudantes interessados, as provas dessas propriedades são um apêndice para este folheto. Exemplo 1 Suponha que um modelo de MA (1) seja x t 10 w t .7 w t-1. Onde (com o excesso de N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por um gráfico deste ACF segue. O enredo que acabamos de mostrar é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra geralmente não fornece um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito dessa trama. A amostra ACF para os dados simulados segue. Vemos um pico no intervalo 1 seguido de valores geralmente não significativos para atrasos após 1. Observe que o ACF de amostra não corresponde ao padrão teórico da MA subjacente (1), que é que todas as autocorrelações por atrasos após 1 serão 0 . Uma amostra diferente teria uma ACF de amostra ligeiramente diferente mostrada abaixo, mas provavelmente teria os mesmos recursos amplos. Propriedades terapêuticas de uma série de tempo com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Observe que os únicos valores não nulos no ACF teórico são para atrasos 1 e 2. As autocorrelações para atrasos superiores são 0 . Assim, uma amostra de ACF com autocorrelações significativas nos intervalos 1 e 2, mas as autocorrelações não significativas para atrasos maiores indicam um possível modelo de MA (2). Iid N (0,1). Os coeficientes são de 1 0,5 e 2 0,3. Uma vez que este é um MA (2), o ACF teórico terá valores diferentes de zero apenas nos intervalos 1 e 2. Os valores das duas autocorrelações não-zero são A Um gráfico do ACF teórico segue. Como quase sempre é o caso, os dados da amostra não se comportam tão perfeitamente quanto a teoria. Nós simulamos n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Onde w t iid N (0,1). A série de séries temporais dos dados segue. Tal como acontece com a série de séries temporais para os dados da amostra MA (1), você não pode contar muito com isso. A amostra ACF para os dados simulados segue. O padrão é típico para situações em que um modelo de MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2 seguidos de valores não significativos para outros atrasos. Observe que, devido ao erro de amostragem, a amostra ACF não corresponde exatamente ao padrão teórico. ACF para General MA (q) Modelos Uma propriedade de modelos de MA (q) em geral é que existem autocorrelações diferentes de zero para os primeiros intervalos de q e autocorrelações 0 para todos os atrasos gt q. Não singularidade de conexão entre valores de 1 e (rho1) em MA (1) Modelo. No modelo MA (1), para qualquer valor de 1. O recíproco 1 1 dá o mesmo valor para Como exemplo, use 0,5 para 1. E depois use 1 (0,5) 2 para 1. Você obterá (rho1) 0.4 em ambos os casos. Para satisfazer uma restrição teórica chamada invertibilidade. Nós restringimos os modelos de MA (1) para ter valores com valor absoluto inferior a 1. No exemplo que acabamos de dar, 1 0.5 será um valor de parâmetro permitido, enquanto que 1 10.5 2 não irá. Invertibilidade de modelos de MA Um modelo de MA é considerado inversível se for algébricamente equivalente a um modelo de AR de ordem infinita convergente. Ao convergir, queremos dizer que os coeficientes de AR diminuem para 0, enquanto nos movemos para trás no tempo. Invertibilidade é uma restrição programada em software de série temporal usado para estimar os coeficientes de modelos com termos MA. Não é algo que buscamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são apresentadas no apêndice. Nota de teoria avançada. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo inversível. A condição necessária para a invertibilidade é que os coeficientes possuem valores tais que a equação 1- 1 y-. - q e q 0 possui soluções para y que se encontram fora do círculo da unidade. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10 w t. 7w t-1. E depois simulou n 150 valores desse modelo e traçou as séries temporais da amostra e a amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0,7), lag. max10) 10 lags de ACF para MA (1) com theta1 0,7 lags0: 10 cria uma variável chamada atrasos que varia de 0 a 10. trama (Lag, acfma1, xlimc (1,10), ylabr, typeh, ACF principal para MA (1) com theta1 0,7) abline (h0) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto Nomeado acfma1 (nossa escolha de nome). O comando de parcela (o comando 3) representa atrasos em relação aos valores ACF para os atrasos 1 a 10. O parâmetro ylab rotula o eixo y e o parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF, use simplesmente o comando acfma1. A simulação e os gráficos foram feitos com os seguintes comandos. Xcarima. sim (n150, list (mac (0.7))) Simula n 150 valores de MA (1) xxc10 acrescenta 10 para fazer a média 10. Padrões de simulação significa 0. plot (x, typeb, mainSimulated MA (1) dados) Acf (x, xlimc (1,10), mainACF para dados de amostra simulados) No Exemplo 2, traçamos o ACF teórico do modelo xt 10 wt .5 w t-1 .3 w t-2. E depois simulou n 150 valores desse modelo e traçou as séries temporais da amostra e a amostra ACF para os dados simulados. Os comandos R utilizados foram acfma2ARMAacf (mac (0.5,0.3), lag. max10) acfma2 lags0: 10 plot (lags, acfma2, xlimc (1,10), ylabr, typeh, ACF principal para MA (2) com theta1 0,5, Theta20.3) abline (h0) xcarima. sim (n150, list (mac (0.5, 0.3))) xxc10 plot (x, typeb, principal Simulated MA (2) Series) acf (x, xlimc (1,10), mainACF for simulated MA(2) Data) Appendix: Proof of Properties of MA(1) For interested students, here are proofs for theoretical properties of the MA(1) model. Variance: (text (xt) text (mu wt theta1 w ) 0 text (wt) text (theta1w ) sigma2w theta21sigma2w (1theta21)sigma2w) When h 1, the previous expression 1 w 2. For any h 2, the previous expression 0. The reason is that, by definition of independence of the w t . E( w k w j ) 0 for any k j. Further, because the w t have mean 0, E( w j w j ) E( w j 2 ) w 2 . For a time series, Apply this result to get the ACF given above. An invertible MA model is one that can be written as an infinite order AR model that converges so that the AR coefficients converge to 0 as we move infinitely back in time. Well demonstrate invertibility for the MA(1) model. We then substitute relationship (2) for w t-1 in equation (1) (3) (zt wt theta1(z - theta1w ) wt theta1z - theta2w ) At time t-2 . equation (2) becomes We then substitute relationship (4) for w t-2 in equation (3) (zt wt theta1 z - theta21w wt theta1z - theta21(z - theta1w ) wt theta1z - theta12z theta31w ) If we were to continue (infinitely), we would get the infinite order AR model (zt wt theta1 z - theta21z theta31z - theta41z dots ) Note however, that if 1 1, the coefficients multiplying the lags of z will increase (infinitely) in size as we move back in time. To prevent this, we need 1 lt1. This is the condition for an invertible MA(1) model. Infinite Order MA model In week 3, well see that an AR(1) model can be converted to an infinite order MA model: (xt - mu wt phi1w phi21w dots phik1 w dots sum phij1w ) This summation of past white noise terms is known as the causal representation of an AR(1). In other words, x t is a special type of MA with an infinite number of terms going back in time. This is called an infinite order MA or MA(). A finite order MA is an infinite order AR and any finite order AR is an infinite order MA. Recall in Week 1, we noted that a requirement for a stationary AR(1) is that 1 lt1. Lets calculate the Var( x t ) using the causal representation. This last step uses a basic fact about geometric series that requires (phi1lt1) otherwise the series diverges. Navigation

No comments:

Post a Comment